
# Scanning Electron Microscopy (SEM) Analysis of FTCSG Stoneware

By Alasdair Chi, PhD candidate, History Program, Nanyang Technological University Singapore

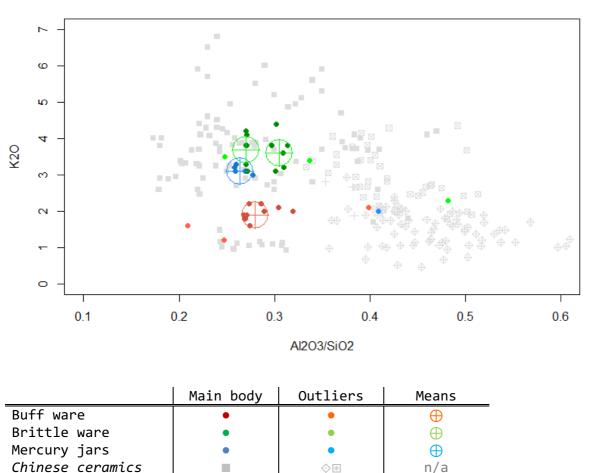
## **Bodies**

Iron oxide (Fe<sub>2</sub>O<sub>3</sub>) vs. Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>



FTCSG, Fe2O3 vs. Al2O3/SiO2

Iron oxide (Fe<sub>2</sub>O<sub>3</sub>) is generally seen as possessing a negative effect on the clay in the kiln during firing, whilst aluminium oxide ( $Al_2O_3$ ) improves the quality of the clay, especially for stoneware and porcelain.


The  $Al_2O_3/SiO_2$  ratio (no units) is representative of the bulk properties of the clay and serves as a useful baseline / x-axis to compare the other minor-proportion characteristic elements.

In terms of the  $Al_2O_3$  content, the FTCSG corpus shows unsurprising values for stoneware similar to known Singapore and Kota Cina samples, nevertheless with notable high- $Al_2O_3$ outliers in all three categories. Buff wares again display the same broad variability relative to the other categories seen in the other sites, while the brittle wares uniquely converge in a bimodal pattern, with a distinct low-  $Al_2O_3$  and high- $Al_2O_3$  group which bracket the mean  $Al_2O_3$  among buff wares.

Like the CCT corpus, the FTCSG sherds with regard to  $Fe_2O_3\%$  vs.  $Al_2O_3/SiO_2$ , do not seem to have separate high-iron and low-iron groups in any of its categories. The mercury jars tending to display low  $Fe_2O_3\%$  values, the brittle ware having the most iron-rich sherds (regardless of  $Al_2O_3$  content), and the buff wares are much closer to mercury jars on average than at CCT.

As with CCT, the  $Fe_2O_3\%$  vs.  $Al_2O_3/SiO_2$  means are most compatible with Hangzhou and Longquan ware, with some outliers tending towards Longquan Guan ware, with  $Al_2O_3/SiO_2$ ratios and  $Fe_2O_3$  fairly distant from those observed in Jingdezhen. It is very clear that there is practically no commonality with high- $Fe_2O_3\%$  Chinese stonewares.

Potassium oxide (K<sub>2</sub>O) vs. Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>



FTCSG, K2O vs. Al2O3/SiO2

Potassium oxide ( $K_2O$ ) is generally seen as possessing a positive effect on the clay in the kiln during firing, permitting tolerance to higher temperatures and longer firing durations.

The FTCSG stoneware demonstrates similar patterns to the CCT results, with a similarly large gap between the high- $K_2O$  brittle ware and the low- $K_2O$  buff ware, but this time mercury jars do not group relatively closely to brittle ware, not forming a distinct cluster like at CCT.

The hypothesis that mercury jars can be meaningfully distinguished from the other two main categories and that brittle and buff wares can be distinguished from each other, especially via  $K_20\%$ ) continues to be vindicated, even if it takes on a different nature to the CCT patterns.

|                  | Mercury jars | Brittle | Buff |  |
|------------------|--------------|---------|------|--|
| $Al_2O_3$        | Low          | Both    | High |  |
| $Fe_2O_3$        | Low          | High    | Low  |  |
| K <sub>2</sub> O | High         | High    | Low  |  |

The FTCSG values are highly similar to the CCT ones and both samples group closer to Jingdezhen and Hangzhou wares (especially the buff ware) than Longquan porcelains despite their Fe<sub>2</sub>O<sub>3</sub>% affinity; Longquan ware K<sub>2</sub>O% being much higher than anything in the corpus, tending towards 6% as opposed to the  $\sim$ 2-4% values seen here.

This however is insufficient evidence to reject a production sequence more similar to Longquan kilns than the Jingdezhen *chaine operatoire* base on the presence of less  $K_2O$ , as adding potassium is less intensive than removing iron during the formation of these stoneware clays. Interestingly, unlike the samples from other sites, the FTCSG buff ware falls entirely outside of the ranges of known kilns due to their very low  $K_2O\%$ .

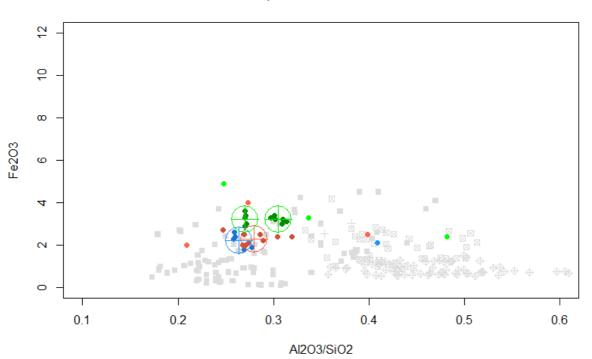
| Category     | A1 <sub>2</sub> 0 <sub>3</sub> % | Category     | A1 <sub>2</sub> 0 <sub>3</sub> % | Category   | A1 <sub>2</sub> 0 <sub>3</sub> % |
|--------------|----------------------------------|--------------|----------------------------------|------------|----------------------------------|
| Mercury jars | $19.5 \pm 0.5$                   | Brittle High | $21.3 \pm 0.3$                   | Buff ware  | 20.4 ± 1.1                       |
|              |                                  | Brittle Low  | $19.3 \pm 0.2$                   |            |                                  |
| FTC-MER-UA   | $19.1 \pm 0.5$                   | FTC-BRI-GA   | $20.3 \pm 1.2$                   | FTC-BUF-GA | $20.9 \pm 0.9$                   |
|              |                                  | FTC-BRI-03   | 17.7                             |            |                                  |
|              |                                  |              |                                  |            |                                  |
|              |                                  |              |                                  |            |                                  |
| FTC-MER-UB   | $20.1 \pm 0.4$                   | FTC-BRI-UB   | $20.2 \pm 1.4$                   | FTC-BUF-GB | $21.0 \pm 1.3$                   |
|              |                                  | FTC-BRI-02   | 30.2                             |            |                                  |
|              |                                  |              |                                  |            |                                  |
| FTC-MER-UC   | 27.2                             | FTC-BRI-UC   | $21.0 \pm 0.1$                   | FTC-BUF-UC | 16.3                             |
|              |                                  | FTC-BRI-10   | 23.1                             |            |                                  |
|              |                                  |              |                                  |            |                                  |
|              |                                  | FTC-BRI-UD   | 19.1                             | FTC-BUF-UD | 18.7                             |
|              |                                  |              |                                  | FTC-BUF-UE | 20.3                             |
|              |                                  |              |                                  | FTC-BUF-09 | 26.4                             |
|              |                                  |              |                                  |            |                                  |
|              | 1                                | I            | I                                | I          | 1                                |

## Aluminium oxide

|                                                                                        |                |               |                           | FTC-BUF-UF<br>FTC-BUF-UG | 20.1<br>19.6 |  |
|----------------------------------------------------------------------------------------|----------------|---------------|---------------------------|--------------------------|--------------|--|
| Fabric Groups                                                                          |                |               |                           |                          |              |  |
| <pre>&gt; summary(aov(Al ~ Type, data= FTCdataAlTrimmed))</pre>                        |                |               |                           |                          |              |  |
| Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1                          |                |               |                           |                          |              |  |
| <pre>&gt; with(FTCdataAlTrimmed, pairwise.t.test(x=Al, g=Type, p.adjust="holm"))</pre> |                |               |                           |                          |              |  |
| Pairwi                                                                                 | se comparisons | using t tests | with pooled               | SD                       |              |  |
| data: Al and                                                                           | Туре           |               |                           |                          |              |  |
| Brittle-LowAl<br>Buff<br>MercuryJar                                                    | 0.08728        | -             | Buff<br>-<br>-<br>0.08728 |                          |              |  |

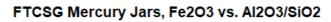
```
P value adjustment method: holm
```

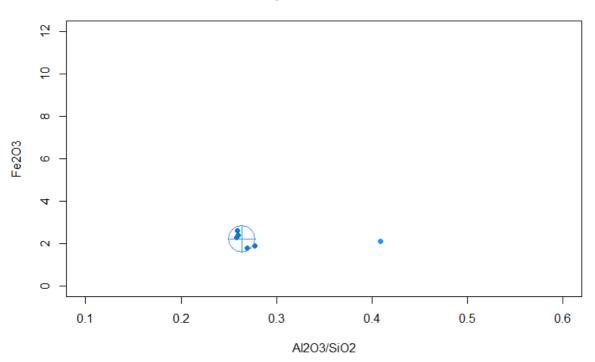
There appears to exist both a high and a low- $Al_2O_3$  distribution within the brittle wares, with the high group slightly overlapping with the buff ware and the low group with the mercury jars. Even given its division into these groups there are a low outlier (GA-03, 17.7%) and two high outliers (UB-02, 30.2%; UC-10, 23.1%). Other outliers include MER-UC-07 (27.2%) as well as BUF-UE-09 (26.4%).

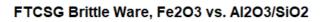

| Category     | Fe <sub>2</sub> O <sub>3</sub> % | Category                        | Fe <sub>2</sub> O <sub>3</sub> % | Category                                      | Fe <sub>2</sub> O <sub>3</sub> % |
|--------------|----------------------------------|---------------------------------|----------------------------------|-----------------------------------------------|----------------------------------|
| Mercury jars | $2.2 \pm 1.0$                    | Brittle ware                    | 3.2 ± 0.2                        | Buff ware                                     | $2.3 \pm 0.2$                    |
| FTC-MER-UA   | 2.4 ± 0.2                        | FTC-BRI-GA<br>FTC-BRI-03        | 2.9 ± 0.7<br>4.9                 | FTC-BUF-GA                                    | 2.2 ± 0.2                        |
| FTC-MER-UB   | 1.9 ± 0.1                        | FTC-BRI-UB<br>FTC-BRI-02        | 3.4 ± 0.0<br>2.4                 | FTC-BUF-GB                                    | 2.5 ± 0.1                        |
| FTC-MER-UC   | 2.1                              | FTC-BRI-UC<br><i>FTC-BRI-10</i> | 3.3 ± 0.1<br>3.3                 | FTC-BUF-GC                                    | 2.0                              |
|              |                                  | FTC-BRI-UD                      | 3.6                              | FTC-BUF-GD<br>FTC-BUF-UE<br><i>FTC-BUF-09</i> | 2.7<br>2.5                       |

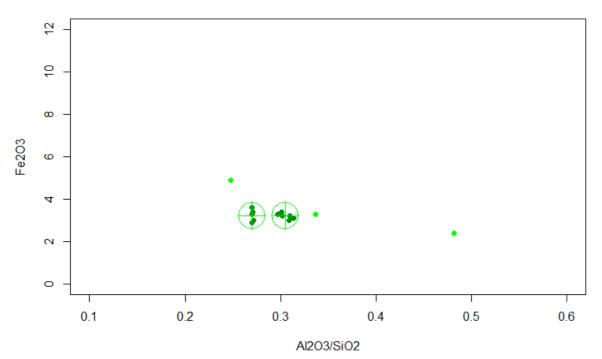
## Iron oxide

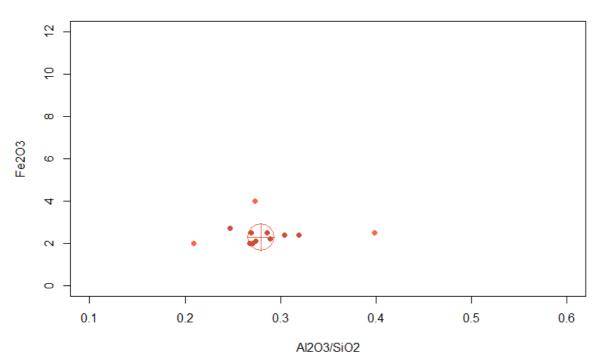
|                                                                                              |                               |                | FTC-BUF-UF<br><i>FTC-BUF-UG</i> | 2.0<br><i>4.0</i> |  |  |
|----------------------------------------------------------------------------------------------|-------------------------------|----------------|---------------------------------|-------------------|--|--|
| l.                                                                                           | I                             | I              | I                               |                   |  |  |
| Fabric Groups                                                                                |                               |                |                                 |                   |  |  |
| > summary(aov(Fe ~<br>Df Sum<br>Type 2 6.0<br>Residuals 23 1.4                               | Sq Mean Sq F V<br>18 3.0091 4 | alue Pr(>F)    |                                 |                   |  |  |
| Signif. codes: 0 '                                                                           | ***' 0.001 '**                | ' 0.01'*' 0.0  | )5'.'0.1''1                     |                   |  |  |
| <pre>&gt; with(FTCdataFeTrimmed, pairwise.t.test(x=Fe, g=Type, p.adjust="holm"))</pre>       |                               |                |                                 |                   |  |  |
| Pairwise co                                                                                  | mparisons usin <u>c</u>       | g t tests with | pooled SD                       |                   |  |  |
| data: Fe and Type                                                                            |                               |                |                                 |                   |  |  |
| Brittle Buff<br>Buff 5.2e-08 -<br>MercuryJar 1.3e-07 0.43<br>P value adjustment method: holm |                               |                |                                 |                   |  |  |


Despite the existence of low- $Al_2O_3$  and high- $Al_2O_3$  brittle wares, there is no statistically significant difference between them in terms of  $Fe_2O_3$  (or  $K_2O$ ) and their values are hence tested as a whole category.


The main pattern seems to be brittle wares being considerably enriched in  $Fe_2O_3$  relative to the other two categories, which are statistically indistinguishable in terms of  $Fe_2O_3$  content.





#### FTCSG, Fe2O3 vs. Al2O3/SiO2


|                  | Main body | Outliers             | Means    |
|------------------|-----------|----------------------|----------|
| Buff ware        | •         | •                    | $\oplus$ |
| Brittle ware     | •         | •                    | $\oplus$ |
| Mercury jars     | •         | •                    | $\oplus$ |
| Chinese ceramics |           | $\otimes \mathbb{R}$ | n/a      |



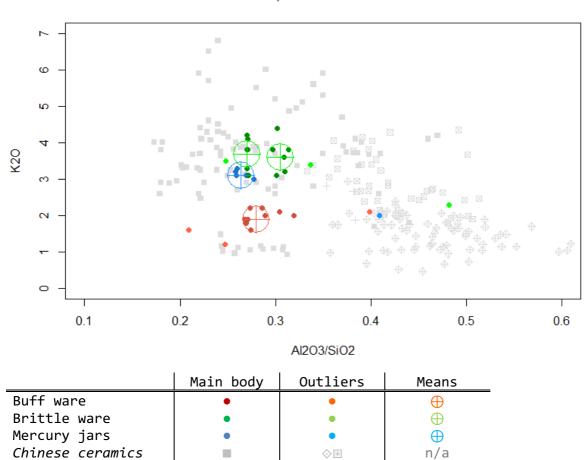




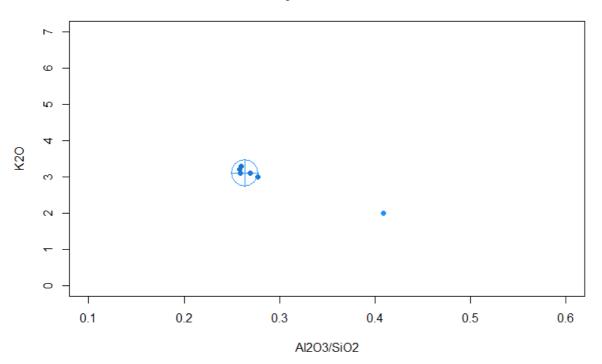




#### FTCSG Buff Ware, Fe2O3 vs. Al2O3/SiO2

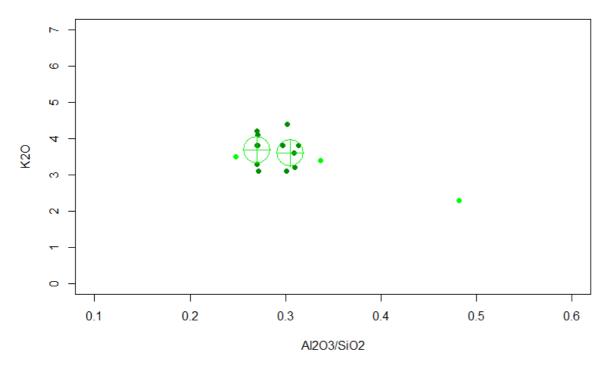

### Potassium oxide

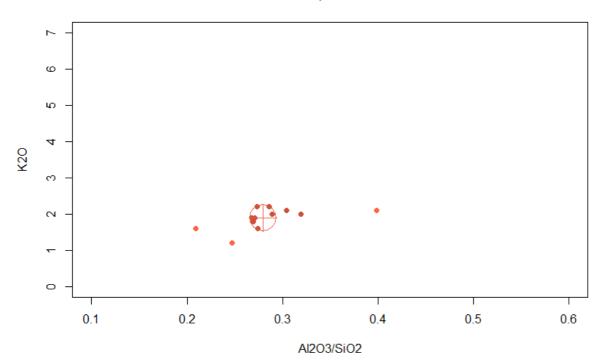
| Category     | K <sub>2</sub> 0% | Category                        | K <sub>2</sub> 0% | Category                                                           | K <sub>2</sub> 0%              |
|--------------|-------------------|---------------------------------|-------------------|--------------------------------------------------------------------|--------------------------------|
| Mercury jars | $3.1 \pm 0.1$     | Brittle ware                    | $3.7 \pm 0.4$     | Buff ware                                                          | $1.9 \pm 0.5$                  |
| FTC-MER-UA   | 3.2 ± 0.2         | FTC-BRI-GA<br><i>FTC-BRI-03</i> | 3.5 ± 0.7<br>3.5  | FTC-BUF-GA                                                         | 2.2 ± 0.2                      |
| FTC-MER-UB   | 3.1 ± 0.1         | FTC-BRI-UB<br><i>FTC-BRI-02</i> | 3.2 ± 0.7<br>2.3  | FTC-BUF-GB                                                         | 2.5 ± 0.1                      |
| FTC-MER-UC   | 2.0               | FTC-BRI-UC<br><i>FTC-BRI-10</i> | 4.1 ± 0.4<br>3.4  | FTC-BUF-GC                                                         | 1.6                            |
|              |                   | FTC-BRI-UD                      | 4.2               | <i>FTC-BUF-GD</i><br>FTC-BUF-UE<br>FTC-BUF-UF<br><i>FTC-BUF-UG</i> | 1.2<br>1.9 ± 0.3<br>1.9<br>2.2 |


## Fabric Groups

2 27 9.069 0.099 91.56 9.33e-13 \*\*\* туре 18.138 Residuals 2.674 Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1 > with(FTCdataKTrimmed, pairwise.t.test(x=K, g=Type, p.adjust="holm")) Pairwise comparisons using t tests with pooled SD к and Type data: Brittle Buff Buff 5.3e-13 -MercuryJar 0.0044 2.9e-07 P value adjustment method: holm

There is no statistically significant overlap between the three types—they are all distinct, with buff ware having the least  $K_2O$ , brittle ware containing the most, and mercury jars falling in between. All groups have anomalously low- $K_2O$  sherds in them, namely MER-UC (2.0%), BRI-UB-02 (2.3%), and BUF-GD (1.2%).





FTCSG, K2O vs. Al2O3/SiO2



### FTCSG Mercury Jars, K2O vs. Al2O3/SiO2







### FTCSG Buff Ware, K2O vs. Al2O3/SiO2